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ABSTRACT 

Wrist-watches are worn by a significant portion of the 

world’s population, but their potential usefulness is not only 

limited to checking the time. Watches are located in a prime 

position to retrieve valuable position and acceleration data 

from a user’s hand movements. In this paper, we explore 

the plausibility of using watches containing accelerometers 

to retrieve acceleration data from hand gesture motions for 

use in human-computer interaction tasks.  

We compare two approaches for discerning gesture motions 

from accelerometer data: naïve Bayesian classification with 

feature separability weighting and dynamic time warping. 

We introduce our own gravity acceleration removal and 

gesture start identification techniques to improve the 

performance of these approaches. Algorithms based on 

these two approaches are introduced and achieve 97% and 

95% accuracy, respectively. We also propose a novel planar 

adjustment algorithm to correctly recognize the same 

gestures drawn in different planes of motion and reduce 

spatial motion dissimilarities. 
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INTRODUCTION 

There is immense untapped potential for more natural 

human-computer interaction that lies within watches. 

Introducing computing power into watches by adding 

accelerometers and wireless transmission capabilities will 

allow us to increase the diversity of the ways in which we 

use watches in our daily lives. 

Gesture recognition is a growing area of interest because it 

provides a natural, expansive interface for humans to 

communicate with computers. The increased versatility and 

fluidity of hand gesture motions in comparison to key 

presses and finger swipes allows people to more seamlessly 

communicate with digital devices. Accelerometers 

implanted in wrist watches worn on users’ hands can 

register unique acceleration signatures of motions that can 

be processed into simple motion types for use in various 

applications. 

Using a watch with an accelerometer has lower complexity 

and cost compared to camera-based gesture recognition [1]. 

In addition, gesture recognition with accelerometers worn 

on the hands is simpler to set up than camera-based gesture 

recognition because a user does not need to face a particular 

direction or sit in front of a screen. For example, a user 

wearing a watch can control a stereo with a wave of the 

hand while sitting in a different room or scroll through a 

public display from a distant seat. 

In this paper, we discuss two approaches, (1) Feature 

Weighted Naïve Bayesian Classifiers [3] and (2) Dynamic 

Time Warping [4], which require a smaller number of 

training samples but still provide high accuracy. We also 

introduce our own improvements to these algorithms that 

improve their usefulness in accelerometer-based gesture 

recognition. 

Previous work has explored watch-based gesture 

recognition using dynamic time warping [9]. In this paper, 

we attempt to expand on previous research by testing the 

efficacy of rotationally normalizing gestures and applying 

feature weighted naïve Bayesian classification to gesture 

recognition. 

EQUIPMENT 

Our implementation uses a TI eZ430-Chronos watch, which 

is cheap and simple to use, as the accelerometer data 

provider. The watch contains a VTI-CMA3000 3-axis 

accelerometer, with a measurement range of 2g, 8-bit 

resolution, and 100Hz sampling rate.  
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We use an ASUS TF300T Android tablet to run our 

algorithms (which are all implemented with Java); however, 

our implementation can be used with any Android device 

and can be ported to other mobile platforms. The tablet 

receives accelerometer data from the watch through an RF-

receiver with USB interface, which is recognized as a serial 

port inside of Android. 

Although we use a TI EZ430 Chronos Watch in our trials, 

any watch that can transmit data to a digital device could be 

used to achieve the same purpose. 

METHODS 

The proposed gesture recognition methods can be split into 

three main phases. The preprocessing phase converts the 

acceleration measurements into a form that is more easily 

recognizable. The plane adjustment phase makes the 

acceleration data rotationally independent. The gesture 

identification stage uses either weighted feature 

classification or dynamic time warping to predict the most 

likely gesture given the acceleration measurements. 

Preprocessing: 

The raw data set received from the accelerometer is noisy, 

contains still frames, and is skewed by gravity so the data 

must be adjusted before they can be properly classified.  

The first step in the preprocessing phase is the removal of 

the acceleration caused by gravity from the watch’s 

acceleration measures. Assuming the rotation of the watch 

is held reasonably constant throughout the gesture, the 

average of all of the acceleration measurements on each 

axis in practice approximately represents the constant value 

of gravity on that axis. To eliminate the effects of gravity, 

this average value is subtracted from each axis at each 

frame. 

Still frames at the beginning and end of the data that are not 

part of the gesture are also removed. Still frames are 

detected by checking the average acceleration in each 0.5 

second window. If the acceleration in a window is below a 

constant threshold, then that window is removed from the 

gesture. 

The jolty nature of hand motions and the discrete sampling 

of the gestures contribute white noise to the data.  A low-

pass filter is used to extract the main gesture motion from 

the noisy accelerometer data. This common process is 

integral in recognizing gestures because it eliminates high-

frequency noise while revealing underlying low-frequency 

patterns in the data. Figure 1 shows the difference between 

the acceleration data before and after the low pass filter is 

applied. 

 

 

Figure 1. Acceleration graphs of gesture trials. The black line 

is a graph of the acceleration magnitude from the watch vs 

time. The red line represents the acceleration graph after the 

low pass filter has been applied. These graphs only show the 

one dimensional x-axis acceleration. 

Plane Adjustment: 

One issue in gesture recognition that has not been explored 

in depth in prior work is recognizing gestures in different 

planes of motion as the same gesture. Sometimes when a 

user is told to trace a circle, he or she does so in the xy 

plane, but other times he or she might trace it in the yz 

plane, or in some plane in between.  

Even if the user is trying to make all of the motions in a 

single plane, there are also usually slight discrepancies in 

the planes of motion among different gesture trials. To 

allow for more realistic and orientation-independent 

communication through the watch, a plane adjustment 

phase is included in our algorithm. 

In this phase, first, the best-fit plane (shown in red in Figure 

2) of the acceleration vectors is found. The rationale behind 

this is that if the motion lies in a single plane, then the 

acceleration vectors of a closed shape (e.g., a circle) should 

on average lie in that main plane. As there could be many 

motion vectors in the motion that do not lie in the main 

plane even after using a low-pass filter, all acceleration 

segments between points of inflection are added up to form 

one vector. In this way, we can identify the general 

direction of the user’s motion, rather than identifying each 

individual motion segment.  

If these gesture segments are represented as a set of vectors 
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  and the plane is represented by the 

equation           then the best fit plane is found 

by minimizing the error, which is 
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To find the best fit plane, the following matrix
 
is solved 

using Gaussian Elimination [5]. 
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After the best fit main plane is found, each vector is 

normalized relative to this plane (shown in Figure 2). 

 

Figure 2. The red curve represents a circle gesture performed 

in the yz plane and the blue curve represents the same gesture 

after its acceleration data has been reoriented relative to the 

xy plane. 

The previous step takes into account rotation about the x 

and y axes, but does not account for rotation about the z 

axis. To fix this, the approximate best-fit line inside the 

best-fit plane is found. To approximate the best fit line, the 

lines extending at angles of   = 22.5°, 45°, 67.5°…180° 

from the origin are tested and the best fit line of these is 

chosen. 

For the set of points  {   〈        〉}   
 the best fit   value 

is obtained by minimizing ∑                 
 
   . This 

equation was chosen because it calculates the sum of 

diffences between acceleration vector angles and the 

candidate best fit line. We want to find the line on which 

most acceleration vectors approximately fall, so using the 

differences between angles is logical.   

 Once   is found, a new angle                    is 

calculated for each vector. A final vector     

√  
    

       √  
    

            , which is the 

original vector adjusted relative to the best fit line, replaces 

each original acceleration vector. 

Gesture Identification 

We compared two approaches to identify gestures based on 

a user’s acceleration data. 

(a) Feature Weighted Naïve Bayesian Classification: 

Naïve Bayesian Classification [3] is a promising technique 

in gesture recognition because it can make accurate 

predictions by using statistical measures to calculate 

membership probabilities. In our implementation of this 

algorithm, twenty statistical features are extracted from the 

acceleration data. These include common statistical 

measures such as interquartile range, average energy, 

maximum of absolute value, and standard deviation.  

Before a user operates the system, the user registers a set of 

training gestures. A weight between 0 and 1 is calculated 

for each feature type based on the similarity of feature 

measures of the different trained gestures of the same 

gesture type. A weight value close to 1 represents very 

precise measures and a value close to 0 represents 

imprecise measures.  

When the user is running the gesture recognition system, 

feature measures are extracted from the user’s registered 

gesture. The proximity of each feature measure to the 

average trained feature measure of each gesture type is 

calculated by a normal distribution by the following 

equation: 

                                                       

Then this proximity value is multiplied by the feature 

weight that was calculated in the training phase. All of 

these multiplied values are summed up and the system 

predicts the user’s gesture to be the gesture type with the 

greatest calculated value. 

(b) Dynamic Time Warping (DTW): 

DTW is a widely used algorithm in gesture recognition that 

calculates the similarity between two time-series data sets. 

This algorithm is based on the idea that to find the time-

independent similarity between a gesture and a template, 

the i
th

 point of the gesture can be aligned (warped) to the j
th
 

point of template [4]. 

 

Figure 3. Each point in the grid represents the geometric 

distance between Circle_1 at index y and Circle_2 at index x. 

For example, to match up Circle_1 at index 10 with Circle_2 

at index 3 requires a geometric distance of about 45. 

Figure 3 provides a visual illustration of the process of 

DTW of two sets of data. In this algorithm, first a matrix A 

is calculated. Each element a(i,j) in the matrix represents 



 

the geometrical distance between the sample data at time 

t(i) and template data (collected in training phase) at time 

t(j). Any gesture that is “close” to the template data is likely 

to be of the same gesture type. Second, a path in the matrix 

A is found so that among all of the paths from a(0,0) to 

a(n,m), the sum of all the elements on the path (P_sum) is 

minimized.  

The above two steps give a value P_sum representing the 

similarity between one sample data set and one template 

(training) data set. Then these steps are completed for all of 

the sample/template data pairs. The pair that has the 

smallest “path sum value” indicates the predicted gesture. 

RESULTS 

Naïve Bayesian and Dynamic Time Warping: 

We tested both techniques using five gesture samples of 

four gesture types from five different people. The tested 

gesture types were circle, figure eight, square, and star. The 

average accuracy was 97% for the feature separability 

weighted Bayesian Classifier, and 95% for the dynamic 

time warping.  

Both of the proposed methods have comparable accuracy 

with previously tested Hidden Markov Models and k-mean 

algorithms [6,7]. However, feature separability weighted 

naïve Bayesian classifiers and dynamic time warping run 

faster on large data sets and require a smaller number of 

training samples [2]. 

Plane Adjustment: 

When five training samples per gesture type are used, the 

average success of the feature separability weighted naïve 

Bayesian classification with plane adjustment is 83.75%, 

compared to 72.5% success without plane adjustment. 

When 10 training samples per gesture type are used in 

training, classification accuracy with plane adjustment 

improves to over 90%. Table 1a and 1b show the specific 

performance of plane adjustment for each gesture type 

when naïve Bayesian classification is used. 

With Plane Adjustment 

  Predicted Class 

  Circle Figure8 Square Star 

A
ct

u
al

 C
la

ss
 

Circle 20 0 0 0 

Figure8 2 16 2 0 

Square 0 2 18 0 

Star 0 0 7 13 

Table 1a. Results when plane adjustment is used. Each gesture 

type on the top is how the algorithm classified the motion and 

each gesture type on the left is how the motion should have 

been classified. 

 

Without Plane Adjustment 

  Predicted Class 

  Circle Figure8 Square Star 

A
ct

u
al

 C
la

ss
 

Circle 20 0 0 0 

Figure8 0 14 2 4 

Square 2 0 12 6 

Star 0 6 2 12 

Table 1b. Results for the same gesture motions when plane 

adjustment is not used. Each gesture type on the top is how the 

algorithm classified the motion and each gesture type on the 

left is how the motion should have been classified. 

APPLICATIONS 

Watch Gesture Recognition 

The use of a common watch equipped with an 

accelerometer is sufficiently cheap and non-invasive to 

make it practical for real-world use in a variety of 

applications. 

The most direct application of this technology is in more 

natural and flexible communication with digital devices 

such as tablets, televisions, and stereos. When sitting in 

front of a screen, a user could rotate a graphic on a 

presentation by moving his or her hand in a circular motion, 

automatically bookmark a webpage by making a star 

motion, or use a hand gesture as a shortcut to go to his or 

her emails. Of course, this form of interaction could not 

replace a keyboard and mouse for certain tasks, but it still 

opens the door for more diverse and seamless interaction 

with users. 

This setup could also allow a user to remotely control 

devices when he or she is unable to or does not want to 

touch a device. A user could use the watch as a more 

natural universal remote to change the channel on the 

television, turn off a computer, or turn off the lights. Also in 

a public situation in which diseases can be spread by touch, 

users could interact with public displays like ATMs and 

airport kiosks through the watch instead of by touch. 

Also there are many situations where people want to control 

a digital device but touch or keyboard control is 

impractical. When a user is cooking, wearing gloves, or 

driving, he or she may be unable to control a stereo, 

computer, or other device. Accelerometer-based gesture 

recognition through a watch is a feasible solution to this 

problem because a user could perform a hand gesture to 

control a device when they cannot access it directly. 

Additionally there is tremendous potential for watch 

accelerometer based gesture recognition in immersive game 

technologies. This was recently evinced by the tremendous 

success of the Nintendo Wii. The Wii is primarily focused 

on recognizing short, linear motions and using a remote to 

track a cursor on the screen. On the other hand, our setup is 



 

more concerned with recognizing gestures that can be 

added to in-game controls. These include using a circle to 

turn around and an up down motion to unlock a door. 

We built an intelligent alarm clock Android application that 

uses the Chronos watch to detect if a user is asleep by 

checking for simple gestures [8]. We are also in the process 

of building Android applications that leverage the Chronos 

watch and gesture recognition in password detection and 

hand motion controlled features in media players. 

Plane Adjustment 

Normalizing the rotation of gestures can improve the 

accuracy and the flexibility of gesture recognition. An 

example of the usefulness of this technique is in public 

situations where devices communicate with different users. 

This form of user-independent communication is 

susceptible to different users using different rotations of the 

same gesture.  

Interestingly, our plane adjustment algorithm improves 

gesture recognition not only in different planes (plane 

adjustment), but also when the watch is held in different 

orientations (rotation normalization). Figures 4 and 5 

contain an example of the same gesture motion being 

performed with different watch orientations. Rotation 

nornalization is useful because an accelerometer device is 

not always fixed in one direction each time the user holds it. 

Often a watch is fixed at an angle as long as it’s worn on 

someone’s wrist. Other accelerometer-containing devices 

that a user might hold instead of wearing, however, would 

not be fixed in one orientation, so the idea of rotation 

normalization could be extended to these devices. 

 

Figure 4. A circle is drawn (the dotted line) in the yz plane 

when the watch is tilted up. 

 

 

Figure  5. A circle is drawn in the xy plane when the watch is 

tilted to the side. This is the same motion as in Figure 4 

because the watch is tilted at the same angle relative to the 

plane of motion. 
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