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ABSTRACT 

A person‟s cognitive state and capacity at a given moment 

strongly impact decision making and user experience, but 

are still very difficult to evaluate objectively, unobtrusively, 

and in real-time. Focusing on smart pen or stylus input, this 

paper explores features capable of detecting high cognitive 

load in a practical set-up. A user experiment was conducted 

in which participants were instructed to perform a 

vigilance-oriented, continuous attention, visual search task, 

controlled by handwriting single characters on an 

interactive tablet. Task difficulty was manipulated through 

the amount and pace of both target events and distractors 

being displayed. Statistical analysis results indicate that 

both the gesture length and width over height ratio 

decreased significantly during the high load periods of the 

task. Another feature, the symmetry of the letter „m‟, shows 

that participants tend to oversize the second arch under 

higher mental loads. Such features can be computed very 

efficiently, so these early results are encouraging towards 

the possibility of building smart pens or styluses that will be 

able to assess cognitive load unobtrusively and in real-time.  
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INTRODUCTION 

Cognitive load represents the mental effort imposed on a 

participant‟s cognitive system when performing a particular 

task [8]. When a task demands very high quality of 

performance, like air traffic control or machine operation, 

the degradation in quality caused by too-high cognitive load 

may lead to accidents or serious consequences. For 

example, it was found that the lack of “at least some 

cognitive availability and understanding of the situation” 

may have led pilots to ignore continuing alarms during the 

fatal accident [3] on the Rio to Paris flight AF447, which 

disappeared over the Atlantic. Being able to assess 

cognitive load in real-time can allow intervention when 

levels become too high and can prevent such accidents. 

Furthermore, in other less safety-critical settings, cognitive 

load assessment can still be useful. For example, in an 

educational setting, assessing students‟ cognitive states 

could help teachers to better control teaching content and 

pace, and thus improve learning effectiveness and 

efficiency. Therefore, research into ways to estimate human 

cognitive state and capability is critical to improving the 

quality of human computer interaction, increasing task 

performance, and developing optimized human-decision-

support applications. Practically speaking, it is important to 

look for good methods of measurement and estimation, 

which will be not only accurate, but also unobtrusive and 

real-time, so they can reduce noise, unpredictable factors, 

and disruptions to the cognitive process.  

There are four different ways to measure cognitive load 

explored in the literature [8]: (i) subjective assessment 

techniques; (ii) task and performance based techniques; (iii) 

behavioral measurements; and (iv) physiological 

measurements. Typically, more than one method is used, so 

their combination can improve accuracy. In our user study, 

both behavioral and physiological measures were used, but 

this paper focuses on behavioral measurement. Behavioral 

measurement is here defined as non-obtrusive data 

collection during natural multimodal interaction. In this 

paper, we report on a user study in which participants 

performed a vigilance-oriented, continuous attention, visual 

search task [2], controlled by handwriting single characters 

on an interactive tablet. We examine behavioral features of 

the pen gestures input in two cognitive load levels to 

identify efficient features that can be computed in real-time. 

Prior work has looked at how gesture features are related to 

changes in cognitive load induced by task complexity [10] 

and task memory demands [11] for simple shapes (circles 

and crosses). That work found that features such as shape 

degeneration [10] and pen trajectory duration, speed, and 

length [11] are correlated with increases in cognitive load. 

Our study expands on that prior work by (a) using another 

way to induce cognitive load (i.e., task speed), (b) probing 
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additional pen input features (i.e., pressure, bounding box 

size, and geometric features such as the symmetry of letter 

„m‟), and (c) using a wider variety of pen input shapes (i.e., 

letters). Prior analysis based on the same experiment 

reported in this paper [2] found that gesture duration, 

number of points (correlated with speed), and gesture 

length were all significantly affected by cognitive load.  

In this paper we extend the list of features examined and 

find that features such as normalized gesture length and 

width over height ratio decreased significantly during the 

high load periods of the task. Also, after examining 

visualizations of all recorded gestures, we noticed that some 

letters seemed to exhibit different forms as cognitive load 

varied, for example, the symmetry of the letter „m‟, showed 

that participants tend to oversize the second arch under 

higher mental loads, as illustrated in Figure 1. Such features 

can be computed very efficiently, so these early results are 

encouraging towards the possibility of building smart pens 

or styluses that will be able to assess cognitive load 

unobtrusively and in real-time. 

 

Figure 1. Sample Input from two Participants. 

MOTIVATION 

Cognitive Load Impacts Performance 

Cognitive load is closely related to the capacity of working 

memory, which, according to the cognitive load theory [8] 

refers to the brain system providing temporary storage of 

the input necessary to acquire information, process it, and 

prepare feedback actions when completing tasks. The 

capacity of working memory is limited; accepted estimates 

of the amount of information it can hold at a time is 

restricted to 7 ± 2 items [5]. When cognitive load exceeds 

working memory‟s capacity limit, the participant‟s 

performance starts to degrade [10]. This degradation could 

lead to longer reaction times, higher error rates, and 

decreased control of actions and movements [11]. 

Therefore, we are examining methods of unobtrusively 

detecting cognitive load spikes, such as using the gesture 

features discusses in this paper, to allow systems to 

intervene to reduce negative impacts of higher load. 

Pen Gesture Input as an Unobtrusive Sensor 

Pen gestures are input produced through a pen or stylus 

during a user‟s interaction with a computer [9]. Previous 

research indicated that some gesture features can be used as 

indicators of cognitive load imposed by a task [10, 11, 12]. 

Compared to other modalities, pen gesture offers benefits 

such as naturalness for the user, low intrusiveness, and the 

possibility to automatically analyze data in real-time. It can 

capture variations in performance implicitly without 

interrupting the task, and the data is available for analysis 

once the current gesture is finished [2, 10]. In the market, 

there are already digital pen and paper systems, such as 

Anoto, which support gesture capture and online/offline 

analysis [1]. Prior research has shown that for specific 

tasks, for example, math problem solving by high school 

students, pen-based systems provide cognitive support and 

produce better learning results than traditional keyboard 

and mouse graphical user interfaces [6], so we believe there 

is similar potential in developing pen-based adaptive 

systems for both safety-critical and other tasks. 

 

Figure 2. Smart Pen Workflow. 

In our work, we use the workflow in Figure 2 as the 

accepted model of how smart pens process and react to user 

input. Based on the written content, the pen extracts 

geometric features and automatically classifies them 

according to pre-built models, possibly trained for specific 

users. Depending on the application, high cognitive load 

detection can be used to trigger alerts, e.g. when a mission-

critical operator is experiencing high cognitive load, a 

manager may be alerted to provide additional resources or a 

break for the operator. In other contexts, the pace of the 

content can be adapted, e.g. when a student is learning 

online content using an interactive tablet. 

Simulating Real-World Tasks  

Previous research has used a variety of experiment designs 

to collect pen gesture input and correlate it to cognitive 

load. One example is the map tasks in [7, 10], in which 

participants are asked to look for routes and organize a 

green light corridor on a city map. There are also tasks 

instructing participants to compose sentences from three 

predefined words [12] or to solve mathematics problems 

[6], requiring participants to write down all the intermediate 

processes. In this paper, we use a continuous attention, 

visual search task, which simulates real-world vigilance 

tasks such as air traffic control or information analysis. Our 

task has two cognitive load levels, and our analysis focuses 

on specific geometric features of the single letter inputs. 

EXPERIMENT DESIGN 

Participants performed a vigilance-oriented continuous 

attention and visual search task [2]. During the experiment, 

arrows facing one of four directions (↑, ↓, ← and →) were 

displayed sequentially (with some overlap) on the screen, 

and each of them was companied by a text identifier 

underneath. There were 12 possible identifiers: {alpha, 



bravo, delta, echo, golf, hotel, india, lima, mike, oscar, 

romeo, zulu}. At any moment, all the identifiers visible on 

the screen were unique. The participants were instructed to 

detect any arrow facing down ↓ while ignoring all the other 

objects (distractors) on the screen, and to write down the 

first letter (the highlighted character in the above list) in a 

“gesture drawing space” located at the bottom right of the 

screen. The user interface is shown in Figure 3. 

 

Figure 3. Experiment User Interface. 

There were two levels of cognitive load in the task, labeled 

Normal and High, and the level was manipulated by 

controlling the time interval between arrows and the 

frequency of occurrence of target objects. During High 

periods, the higher frequency of actions required increased 

intrinsic cognitive load, and the higher number of 

distractors increased extraneous load, so this condition is 

labeled high load in our analysis. 

There were 12 participants (7 males and 5 females) who 

used the pen modality to perform the task. Two participants 

(both female) were excluded from data analysis due to post-

hoc analysis showing that in-task recognition of their 

gestures had had very low accuracy (i.e., less than two 

standard deviations below the mean), leaving an N of 10.
1
 

The equipment used to collect gestures during the 

experiment was a Tablet PC (Fujitsu Lifebook T-900). The 

system collected all task information, including the target 

and distractor objects and their order of appearance (same 

sequence for every user), task performance (recognized 

result and the system response: True Hit, Miss, etc.), and 

pen input trajectories. The analysis is based on these 

trajectories, which store each sampled gesture point 

(timestamp, character written, coordinates, pressure), and 

whole gesture information (start and end indicators). 

                                                           

1
 This low accuracy could have caused an additional load on the 

user and, for this investigation, we wanted to isolate the load 

caused by the task difficulty manipulation only. 

DATA ANALYSIS RESULTS 

Bounding Box 

The term bounding box refers to the smallest box that can 

contain a gesture entirely. The bounding box has several 

geometrical features, including height, width, area and the 

width to height ratio (width/height, which is also cot α in 

Figure 4). 

 

Figure 4. Defining a bounding box for the gesture. 

The mean width over height ratio across all gestures is 

0.851 (σ = 0.203, N = 10) in the Normal condition and 

0.768 (σ = 0.169, N = 10) in the High condition. The 

decreasing trend of mean width over height ratio between 

Normal and High is consistent for all but one participant. 

The result of a two-tailed t-test showed the width over 

height ratios varied significantly between Normal and High 

(t(9) = 3.05, p < 0.05). 

However, when comparing all letters together, we must take 

into account that the generic letter shapes exhibit different 

width over height ratios. For example, the width over height 

ratio for lima and india are quite small compared to the 

ratio for mike. Moreover, the frequency of occurrence of 

different letters was not completely balanced between the 

two conditions because there were many more targets in the 

High condition. For example, lima or india appear 9 times 

as the targets in the High condition, but only once in the 

Normal condition. Therefore, the significant result above 

may be partly due to a bias linked to targets (letters) with 

smaller width over height ratio occurring more frequently in 

the High condition. 

In order to mitigate the effect of the shape of the letter, the 

ratio of each gesture was normalized by a “standard” ratio 

for each specific letter, reflecting the shape of the letter. 

The standard ratio is calculated as the average width over 

height ratio across all occurrences of that letter from all 

participants, across both conditions. (The limited number of 

gestures from each participant did not permit us to establish 

a standard ratio per letter per participant.) Each individual 

occurrence of a letter is normalized by dividing its ratio by 

the standard ratio for that letter:  

normalized_ratio = original_ratio / standard_ratio 

The standard ratios in Table 1 validate that different ratios 

apply to different letters. For example, india and lima have 

relatively small values, whereas mike and zulu are larger.  



After that processing, a two-tailed t-test was used once 

more on the normalized width over height ratios, but found 

no significant differences between Normal and High 

conditions when controlling for properties of the letter 

entered (t(9) = -0.32, n.s.).  

Letter Standard Ratio Letter Standard Ratio 

alpha 1.13 india 0.19 

bravo 0.62 lima 0.40 

delta 0.60 mike 1.48 

echo 1.03 oscar 0.79 

golf 0.53 romeo 0.97 

hotel 0.64 zulu 1.87 

Table 1. Standard Letter Ratio for each letter in the study. 

Gesture Pressure 

Every point of a gesture has a pressure value as sensed by 

the hardware during input, and we define gesture pressure 

as the mean pressure value across all points of that gesture. 

The pressure sensing capability malfunctioned during the 

study, so another two participants had to be excluded from 

just this analysis (leaving an N of 8). The mean values of 

gesture pressure for the remaining 8 participants were 

25,743 screen dots in the Normal condition and 26,164 dots 

in the High condition (the TabletPC range was [0~32,767 

screen dots]). A similar normalization process to the one 

described for the bounding box was used here: 

normalized_pressure = current_pressure / standard_pressure 

where the standard pressure for a specific letter is 

calculated as the average pressure across all occurrences of 

that letter from all participants, across both conditions. The 

mean values after normalization were 0.936 (σ = 0.141, N = 

8) and 0.938 (σ = 0.126, N = 8) for Normal and High 

conditions, respectively. These values indicate that 

participants tended to press slightly harder in the High 

condition than in the Normal condition. However, a two-

tailed t-test indicated that this trend was not significant (t(7) 

= -0.26, n.s.), reducing the utility of this feature for 

detecting changes in cognitive load. 

Gesture Length 

Gesture length is the sum of the Euclidean distances 

between every two consecutive points in a single gesture, 

which is computed by the following formula: 

 

where (xi, yi), (xi+1, yi+1) are the coordinates for two 

consecutive points, and the gesture length is the sum of 

Euclidean distances between every two consecutive points. 

Extending prior results [2], here we normalize length using 

a standard length (defined as the mean length across all 

occurrences of each letter from all participants, across both 

conditions). After such normalization, the mean values of 

gesture length were 1.08 (σ = 0.335, N = 10) for Normal 

and 0.93 (σ = 0.29, N = 10) for High, indicating a shorter 

gesture length in the High condition which was significant 

by a two-tailed t-test (t(9) = 3.79, p < 0.05), further 

supporting this feature‟s relationship to cognitive load. 

Symmetry of letter ‘m’ 

To examine whether our anecdotal observations of 

differences in the symmetry of the letter „m‟ were supported 

by the data, we compared the widths of the left arch and 

right arch in High and Normal load conditions.  

 
Figure 5. Symmetry of the letter ‘m’. 

Figure 5 illustrates how to extract the feature. The first step 

is to find the bounding box of the letter, then compute the 

distance d between the top and bottom lines, and then draw 

a straight horizontal line in the middle of the box, d / 2 

away from top and bottom lines. Typically, there will be 

about 5 crossing points between the line and the gesture, 

but the actual number of crossing points may vary 

according to the way the letter was written. After that, the 

ratio between the two longest segments of the horizontal 

line, q and p is used to check the symmetry of this letter: 

Symmetry = q / p 

The closer to 1 this value is, the more symmetrically the 

letter was formed; otherwise, the left arch may be much 

larger or smaller than the right one. Although this method is 

only an estimation of symmetry, it is easy to implement and 

can be computed very efficiently. 

The mean symmetry value in the Normal condition was 0.88 

(σ = 0.751, N = 10), which was smaller than 1.28 (σ = 

0.418, N = 10) observed in the High condition, but a two-

tailed t-test (t(9) = -1.59, n.s.) showed that this difference 

was not significant. We also assessed the same feature at 

different horizontal cross sections of the letter, for example 

moving the crossing line up or down by 10% away from the 

middle height, but there were still no significant differences 

in the t-test results. Hence, while there was a trend for 

participants to write the right arch wider than the left arch 

under higher mental load, the fluctuation was not 

significant from a statistical viewpoint. 



DISCUSSION 

As mentioned, prior work has examined what gesture 

features are related to changes in cognitive load [10, 11, 

12]. Our study expands on prior work by (a) exploring 

another way to induce cognitive load (i.e., task speed), (b) 

probing additional pen input features (i.e., pressure, 

bounding box size, and geometric features such as the 

symmetry of letter „m‟), and (c) using a wider variety of 

pen input shapes (i.e., letters). Shape degeneration [10] and 

pen trajectory duration, speed and length [11] have been 

found in other experiments to correlate to cognitive load. 

Previous analysis based on the same experiment reported in 

this paper [2] also found that gesture duration, number of 

points (correlated with speed), and gesture length were 

significantly affected by difficulty-induced cognitive load. 

We extended this past work by looking at even more 

gesture input features and explored how they responded to 

changes in cognitive load, all in search of a canonical set of 

gesture features that can be efficiently computed in real-

time systems and are responsive to all types of cognitive 

load. 

In the feature analysis, normalization over the standard 

value of the features per letter played a critical role, by 

effectively decreasing the impact of factors that vary from 

letter to letter. These factors included, among others, 

bounding box size and gesture length. Normalization also 

compensated for the unbalanced letter distribution of the 

task design. During the analysis, features like width over 

height ratio and gesture length showed statistically 

significant relationships to cognitive load originally. 

However, after normalization, differences in the width over 

height ratios between load conditions were not statistically 

significant, indicating that previous positive results may be 

affected by the letters that were input. 

In summary: 

o Both gesture length and normalized gesture length 

exhibited significant relationships with cognitive load. 

o The bounding box width over height ratio showed 

significant differences as the load increased, but after 

normalization (over standard letter ratio), it was not 

significantly affected. 

o Neither gesture pressure nor normalized gesture 

pressure were significantly affected by increasing 

cognitive load. 

o The symmetry of the letter „m‟ exhibits an increased 

trend in the high load condition, but it is not significant. 

o From a practical perspective, a simple feature like 

gesture length can estimate cognitive state unobtrusively 

and can be computed very efficiently, making it a good 

candidate for a smart pen or stylus. 

The dimensions of the gesture bounding box are important 

features. The results showed declining trends during High 

load (although not significant), indicating that cognitive 

load may impact fine-grained handwritten production, 

although degeneration in gesture shapes were observed in 

past research [10]. However, it has also been postulated that 

handwriting skills are based on primary communication 

systems (folk psychology) and hence should not get taxed 

by variations in cognitive load [4]. Further experimentation 

is required to determine which explanation prevails. In 

particular, in future explorations, we would change the 

experiment design in order to balance written input and 

collect more samples of each type of letter from more 

participants. Such changes would also allow us to group 

participants based on post hoc analysis of their individual 

inputs, for example, users who tend to write larger or 

smaller or experience larger impacts due to cognitive load. 

The symmetry of the letter „m‟ is an early attempt at 

exploring specific geometric features of individual pen 

gesture shapes. The results highlighted an increasing trend 

during High load (although not significant), which means 

higher cognitive load may have an effect on the way people 

form their letters, especially towards the end of the gesture: 

the right arch tended to increase in width compared to the 

left one under higher load. Again, a possible reason for the 

non-significant trend might be that there are individual 

differences among participants which could be explored by 

capturing more data in the future. 

CONCLUSIONS AND FUTURE WORK 

Focusing on smart pen or stylus input, this paper explores 

features capable of detecting high cognitive load in a 

practical set-up. Participants performed a vigilance-

oriented, continuous attention, visual search task, controlled 

by handwriting single characters on an interactive tablet. 

Task difficulty was manipulated through the amount and 

pace of both target events and distractors being displayed. 

Both gesture length and width over height ratio decreased 

significantly in the high load session. Another feature, the 

symmetry of the letter „m‟, showed that participants tend to 

write the right arch wider than the left one under higher 

mental load. Gesture pressure and bounding box size were 

not significantly affected by cognitive load, though. 

Features such as gesture length can be computed very 

efficiently, making them good candidates for a smart pen or 

stylus to assess cognitive load unobtrusively in real-time. 

In the future, more research will be needed to validate these 

results and to explore more gesture features to detect 

changes in cognitive load robustly. For example, other 

geometric features will be explored, such as angles or 

curvature of segments composing letters.  

In order to ensure the high load we impose on the 

participants is actually high enough, we are planning to 

modify the experiment design through different timings and 

distracters, and by adding other sources of load, for 

example, using a dual task methodology. We will also 

balance the number of individual letters collected under 

each condition, and increase the number of inputs elicited 

so we can analyze the gesture data on a per-user basis.  



We believe that a combination of features will be required 

to estimate cognitive load from handwritten input. Once 

identified, this work can lead to the construction of smart 

pens and styluses that will be able to monitor a user‟s 

performance and adapt the task at hand implicitly to 

moment-to-moment fluctuations in cognitive load.  
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